Association. The authors gratefully acknowledge Smith Kline Beckman Corporation for diffractometer time and support of DSE as a postdoctoral scientist.

References

- BENEDETTI, E. (1977). Peptides: Proceedings of the Fifth American Peptide Symposium, edited by M. GOODMAN & J. MEINHOFER, pp. 257–273. New York: John Wiley.
- BENEDETTI, E., DIBLASIO, B., PAVONE, V., PEDONE, C., GERMAIN, G. & GOODMAN, M. (1979). *Biopolymers*, 18, 517-522.
- BENEDETTI, E., PEDONE, C., TONIOLO, C., NEMETHY, G., POTTLES, M. S. & SCHERAGA, H. A. (1980). Int. J. Pept. Protein Res. 16, 165–172.
- CHAKRABARTI, P., VENKATESAN, K., SINGH, U. C. & RAO, C. N. R. (1981). *Biochim. Biophys. Acta*, **670**, 134–137.
- CORFIELD, P. W. R., DOEDENS, R. J. & IBERS, J. A. (1967). Inorg. Chem. 6, 197-204.
- DUNITZ, J. D. & STRICKLER, P. (1968). Structural Chemistry and Molecular Biology, edited by A. RICH & N. DAVIDSON, pp. 595-602. San Francisco: Freeman.
- EGGLESTON, D. S. (1983). PhD thesis, Univ. of North Carolina.

- EGGLESTON, D. S. & HODGSON, D. J. (1982a). Int. J. Pept. Protein Res. 19, 206-211.
- EGGLESTON, D. S. & HODGSON, D. J. (1982b). Acta Cryst. B38, 1216-1220.
- EGGLESTON, D. S. & HODGSON, D. J. (1982c). Int. J. Pept. Protein Res. 20, 66-72.
- EGGLESTON, D. S. & HODGSON, D. J. (1983a). Acta Cryst. C39, 75-78.
- EGGLESTON, D. S. & HODGSON, D. J. (1983b). Int. J. Pept. Protein Res. 21, 288–295.
- EGGLESTON, D. S., VALENTE, E. J. & HODGSON, D. J. (1981a). Acta Cryst. B37, 1428-1430.
- EGGLESTON, D. S., VALENTE, E. J. & HODGSON, D. J. (1981b). Acta Cryst. B37, 1430-1432.
- IUPAC-IUB COMMISSION ON BIOCHEMICAL NOMENCLATURE (1970). J. Mol. Biol. 52, 1-17.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- RICH, D. H., LEHRMANN, S. R., KAWAI, M., GOODMAN, H. L. & SUTTIE, J. W. (1981). J. Med. Chem. 24, 706-711.

Acta Cryst. (1984). C40, 1204–1205

Triméthyl-1,3,6 Diphényl-4,5 Oxa-9 Diaza-2,7 Tricyclo[$3.3.1.0^{2,4}$]nonanone-8, C₂₁H₂₂N₂O₂

PAR RENÉ FAURE ET HENRI LOISELEUR

Laboratoire de Chimie Analytique II, Université Lyon I, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France

ET GÉRARD ALVERNHE ET ANDRÉ LAURENT

Laboratoire de Chimie Organique III, ERA CNRS 611, Université Lyon I, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France

(Reçu le 7 novembre 1983, accepté le 22 février 1984)

Abstract. $M_r = 334.4$, monoclinic, $P2_1/c$, a = 11.669 (2), b = 15.338 (4), c = 13.596 (4) Å, $\beta = 133.75$ (2)°, V = 1758 (2) Å³, Z = 4, $D_x = 1.26$ Mg m⁻³, λ (Cu $K\bar{\alpha}$) = 1.5424 Å, $\mu = 0.66$ mm⁻¹, F(000) = 712, T = 295 K, R = 0.035 for 1834 unique reflections. The molecule resulting from the condensation of two molecules of 2-methyl-3-phenylazirine with one molecule of ethyl lactate has a tricyclic structure. In spite of the presence of six asymmetric centers, only one diastereoisomer, corresponding to the lowest steric hindrance, is formed.

Introduction. Le composé a été obtenu par condensation de deux molécules de méthyl-2 phényl-3 azirine avec une molécule de lactate d'éthyle (Alvernhe, Laurent, Masroua & Diab, 1983). Il est remarquable qu'un seul diastéréoisomère soit obtenu. La spectrométrie de masse et la RMN ¹H n'ont pas permis d'en établir la structure de façon non équivoque.

0108-2701/84/071204-02\$01.50

 $\begin{array}{c} (19) \\ H(20) \\ H(21) \\ H(22) \\ C(12) \\ C(12) \\ C(10) \\ C(10) \\ C(10) \\ C(10) \\ C(11) \\$

Fig. 1. Vue schématique en perspective de la molécule (par simplification, les atomes d'hydrogène des phényles ne sont pas représentés).

© 1984 International Union of Crystallography

 Tableau
 1. Coordonnées et paramètres d'agitation thermique isotrope équivalente

$\boldsymbol{B}_{\text{éq}} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$				
	x	У	z	$B_{\rm \acute{eq}}({\rm \AA}^2)$
0(1)	0,3637 (1)	-0,4089 (1)	0,4070 (1)	3,0 (1)
O(2)	0,1352 (2)	0,4179 (1)	0,0574 (1)	4,2 (1)
N(1)	0,0920 (2)	-0,4767 (1)	0,1819 (2)	3,4(1)
N(2)	0,1902 (2)	-0,2934 (1)	0,2713 (2)	3,1(1)
C(1)	0,2429 (2)	-0,4160 (1)	0,4091 (2)	2,8 (1)
C(2)	0,1319 (2)	-0,4904 (1)	0,3100 (2)	3,0 (1)
C(3)	0,1657 (2)	-0,4223 (1)	0,1642 (2)	3,2(1)
C(4)	0,2869 (2)	-0,3620(1)	0,2830 (2)	3,0(1)
C(5)	0,4110 (3)	-0,3283 (2)	0,2864 (2)	3,8 (1)
C(6)	0,1615 (2)	-0,3258 (1)	0,3554 (2)	3,0(1)
C(7)	0,2740 (2)	-0,2519 (1)	0,4054 (2)	3,2(1)
C(8)	0,2056 (3)	-0,5804 (1)	0,3663 (3)	3,9 (1)
C(9)	0,3181 (2)	-0,4336 (1)	0,5530 (2)	3,2(1)
C(10)	0,2282 (3)	-0,4634 (2)	0,5779 (2)	4,2 (1)
C(11)	0,2964 (4)	-0,4799 (2)	0,7090 (3)	5,2 (2)
C(12)	0,4559 (4)	-0,4666 (2)	0,8171 (3)	5,4 (2)
C(13)	0,5469 (3)	-0,4359 (2)	0,7948 (2)	5,2 (2)
C(14)	0,4796 (3)	-0,4192 (2)	0,6633 (2)	4,0 (1)
C(15)	0,0044 (2)	-0,3130 (1)	0,3113 (2)	3,1 (1)
C(16)	-0,1380 (2)	-0,3270 (1)	0,1772 (2)	3,8 (1)
C(17)	-0,2800 (3)	-0,3177 (2)	0,1417 (3)	4,6 (1)
C(18)	-0,2845 (3)	-0,2941 (2)	0,2361 (3)	5,0 (2)
C(19)	-0,1444 (3)	-0,2786 (2)	0,3691 (3)	5,0(1)
C(20)	-0,0003 (3)	-0,2878 (2)	0,4064 (3)	4,0 (1)
C(21)	0,2322 (3)	-0,1587 (2)	0,3998 (3)	4,3 (1)

Tableau2. Principales longueurs (Å) et principaux
angles (°) de liaison intramoléculaires

C(1) - O(1)	1,435 (2)	C(10) - C(9)	.384 (3)
C(2) - N(1)	1,474 (2)	C(11) - C(10)	.384 (3)
C(2) - C(1)	1,544 (3)	C(12) - C(11)	.372 (4)
C(3)-O(2)	1,235 (2)	C(13) - C(12) = 1	.372 (4)
C(3) - N(1)	1,334 (2)	C(14) - C(9) 1	.393 (3)
C(4) - O(1)	1,441 (2)	C(14) - C(13) 1	.392 (3)
C(4) - N(2)	1,470 (2)	C(15) - C(6) 1	.495 (3)
C(4) - C(3)	1,518 (3)	C(16)–C(15)	.394 (3)
C(5) - C(4)	1,508 (3)	C(17) - C(16) 1	.376 (3)
C(6) - N(2)	1,482 (2)	C(18) - C(17) 1	.369 (4)
C(6) - C(1)	1,546 (3)	C(19) - C(18) 1	.383 (4)
C(7) - N(2)	1,490 (2)	C(20) - C(15) 1	.386 (3)
C(7) - C(6)	1,495 (3)	C(20) - C(19) 1	.388 (3)
C(8) - C(2)	1,523 (3)	C(21) - C(7) 1	495 (3)
C(9) - C(1)	1,514 (3)	- () - ()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C(1)-O(1)-C(4)	103,7 (1)	N(2)-C(6)-C(7)	60,1 (1)
C(2)-N(1)-C(3)	125,9 (2)	N(2) - C(6) - C(15)	121,0 (2)
C(4) - N(2) - C(6)	104,1 (1)	C(1) - C(6) - C(7)	113.8 (2)
C(4)-N(2)-C(7)	111,7 (1)	C(1) - C(6) - C(15)	119,3 (1)
C(6)-N(2)-C(7)	60,4 (1)	C(7) - C(6) - C(15)	122.0 (2)
O(1)-C(1)-C(2)	106,3 (1)	N(2) - C(7) - C(6)	59,5 (1)
O(1)-C(1)-C(6)	102,4 (1)	N(2) - C(7) - C(21)	115,5 (2)
O(1)-C(1)-C(9)	109,8 (1)	C(6)-C(7)-C(21)	123,2 (2)
C(2)-C(1)-C(6)	112,3 (1)	C(1)-C(9)-C(10)	120,9 (2)
C(2)-C(1)-C(9)	112,5 (1)	C(1)-C(9)-C(14)	120,5 (2)
C(6)-C(1)-C(9)	112,8 (1)	C(10)-C(9)-C(14)	118,6 (2)
N(1)-C(2)-C(1)	108,4 (1)	C(9)-C(10)-C(11)	121,2 (2)
N(1)-C(2)-C(8)	109,4 (2)	C(10)-C(11)-C(12)	119,8 (3)
C(1)-C(2)-C(8)	113,0 (2)	C(11)C(12)-C(13)	119,9 (2)
O(2)-C(3)-N(1)	123,3 (2)	C(12)C(13)-C(14)	120,7 (2)
O(2) - C(3) - C(4)	121,1 (2)	C(9)-C(14)-C(13)	119,7 (2)
N(1)-C(3)-C(4)	115,6 (2)	C(6)-C(15)-C(16)	121,8 (2)
O(1)-C(4)-N(2)	107,0 (1)	C(6)-C(15)-C(20)	119,3 (2)
O(1)-C(4)-C(3)	108,0 (2)	C(16)-C(15)-C(20)	118,9 (2)
O(1)-C(4)-C(5)	109,2 (2)	C(15)-C(16)-C(17)	120,0 (2)
N(2)-C(4)-C(3)	103,9 (1)	C(16)-C(17)-C(18)	121,1 (2)
N(2)-C(4)-C(5)	114,0 (2)	C(17)-C(18)-C(19)	119,6 (2)
C(3)-C(4)-C(5)	114,2 (2)	C(18)-C(19)-C(20)	119,9 (2)
N(2)-C(6)-C(1)	105,7 (1)	C(15)-C(20)-C(19)	120,5 (2)

Partie expérimentale. Cristallisation dans l'éther de pétrole; parallélépipède taillé $0.25 \times 0.25 \times 0.50$ mm; diffractomètre Nonius CAD-4; monochromateur de graphite; paramètres de réseau affinés par moindres carrés utilisant 25 réflexions; absences systématiques h0l pour l = 2n + 1, 0k0 pour k = 2n + 1. Corrections de Lorentz et de polarisation, absorption ignorée. 3512 réflexions indépendantes examinées pour $2 \le 2\theta \le 146^\circ$, $-14 \le h \le 14$, $0 \le k \le 19$, $0 \le l \le 16$. Réflexion de contrôle $\overline{132}$: variation maximale de 4,3% autour de la valeur moyenne. Réflexions observées si $I > 1,25\sigma(I)$ et $I > 1,3I_{fond}$. Méthodes directes: programme MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978). Affinements sur F. H à partir de synthèses ΔF , munis de B égal au $B_{\acute{e}a}$ de l'atome porteur. Itérations finales sur les x, y, z de tous les atomes; $R_w = 0.049$ avec $w = (a + b |F_a|)^{-2}$; S = 0,54; $(\Delta/\sigma)_{max} = 0,66$ (atomes non H); série-différence finale: $\Delta\rho \le 0,08$ e Å⁻³. f pris dans International Tables for X-ray Crystallography (1974).

Discussion. Les coordonnées atomiques affinées sont dans le Tableau 1,* et les longueurs et angles de liaison dans le Tableau 2. La molécule est schématisée sur la Fig. 1 (ORTEP, Johnson, 1965). Cet unique diastéréoisomère possède une structure tricyclique. On peut le décrire comme résultant de la condensation [liaisons C(1)-C(6) et C(4)-N(2)] de la méthyl-2 phényl-3 azirine avec une p-oxazine résultant elle-même de la condensation d'une première molécule d'azirine avec le lactate d'éthyle. Considérant la structure obtenue, un mécanisme réactionnel a pu être proposé. L'unicité de l'isomère s'explique en particulier par le fait que la condensation avec la p-oxazine s'effectue de sorte qu'aucune contrainte d'encombrement stérique n'apparaisse dans la formation des deux liaisons précitées (Alvernhe et al., 1983).

* Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope, des paramètres des atomes d'hydrogène et les équations des différents plans moyens, les distances atomiques à ces plans et les angles dièdres ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 39288: 23 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

- ALVERNHE, G., LAURENT, A., MASROUA, A. & DIAB, Y. (1983). Tetrahedron Lett. 24, 1153–1156.
- International Tables for X-ray Crystallography (1974). Tome IV, p. 99. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. de York, Angleterre, et Louvain, Belgique.